Summarizing data visualization errors

Check out this good quick overview of visualization errors – here are a few good moments:

Everything is relative. You can’t say a town is more dangerous than another because the first one had two robberies and the other only had one. What if the first town has 1,000 times the population that of the first? It is often more useful to think in terms of percentages and rates rather than absolutes and totals…

It’s easy to cherrypick dates and timeframes to fit a specific narrative. So consider history, what usually happens, and proper baselines to compare against…

When you see a three-dimensional chart that is three dimensions for no good reason, question the data, the chart, the maker, and everything based on the chart.

In summary: data visualizations can be very useful for highlighting a particular pattern but they can also be altered to advance an incorrect point. I always wonder with these examples of misleading visualizations whether the maker intentionally made the change to advance their point or whether there was a lack of knowledge about how to do good data analysis. Of course, this issue could arise with any data analysis as there are right and wrong ways to interpret and present data.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s